Analysis of Machine Learning Utilization in Identifying Social Assistance Recipients in Aceh Province
DOI:
https://doi.org/10.38142/jtep.v5i4.1530Keywords:
Machine Learning, Social Assistance, Prosperous Family CardAbstract
Poverty is still an ongoing problem in Indonesia, especially in Aceh Province, even though various interventions such as the Program Keluarga Harapan (PKH) and the use of the Kartu Keluarga Sejahtera (KKS) have been implemented. This study aims to classify social assistance recipients more accurately, in order to reduce poverty levels in Aceh Province. This study uses secondary data from the 2023 National Socio-Economic Survey (NSES) with a total of 13,316 household observations and involving 28 independent variables. The results of the study show that the Classification Tree algorithm is able to classify households with an accuracy rate of 80%. The most influential variables in predicting KKS recipients include the education of the head of the household, floor area, number of household members, source of drinking water, and employment status. These findings indicate that a data-driven approach can improve the targeting accuracy of social assistance programs and support poverty alleviation efforts more effectively.
References
Agwil, W., Agustina, D., Fransiska, H., & Hidayati, N. (2022). Klasifikasi Karakteristik Kemiskinan Di Provinsi BengkuluTahun 2020 Menggunakan Metode Pohon Klasifikasi Gabungan. Jurnal Aplikasi Statistika & Komputasi Statistik, 14, 23–32. https://doi.org/10.34123/jurnalasks.v14i2.348
Aribowo, A., Kuswandhie, R., & Primadasa, Y. (2021). Penerapan dan Implementasi Algoritma CART Dalam Penentuan Kelayakan Penerima Bantuan PKH Di Desa Ngadirejo. CogITo Smart Journal, 7(1), 40–51. https://doi.org/10.31154/cogito.v7i1.293.40-51
Badan Pusat Statistik. (2024). Profil Kemiskinan Penduduk di Provinsi Aceh, Maret 2024. 4, 1–12.
Hasyim, Y. Al, Hamid, A., & Hardana, A. (2023). PROFJES: Profetik Jurnal Ekonomi Syariah. PROFJES: Profetik Jurnal Ekonomi Syariah, 2(2).
Kementerian Keuangan RI. (2023). Kemiskinan Makro dan Kemiskinan Mikro (p. 1). Kementerian Keuangan RI. https://djpb.kemenkeu.go.id/kppn/lubuksikaping/id/data-publikasi/artikel/3155-kemiskinan-makro-dan-kemiskinan-mikro.html
Kustanto, D. N. (2015). Dampak Akses Air Minum Dan Sanitasi Terhadap Peningkatan Kesejahteraan. Jurnal Sosek Pekerjaan Umum, 7(3), 173–179.
Larose, D. T., & Larose, C. D. (2014). Discovering Knowledge in Data. Discovering Knowledge in Data. https://doi.org/10.1002/9781118874059
Nur, A., Rohim, A., Purnamasari, A. I., & Ali, I. (2024). Komparasi Efektifitas Algoritma C4.5 Dan Naïve Bayes Untuk Menentukan Kelayakan Penerima Manfaat Program Keluarga Harapan (Studi Kasus: Kecamatan Cicalengka Kabupaten Bandung). Jurnal Mahasiswa Teknik Informatika, 8(2), 2355–2362. https://doi.org/10.36040/jati.v8i2.8345
Nuzula, L., Prahutama, A., & Hakim, A. R. (2020). Klasifikasi Status Kemiskinan Rumah Tangga Dengan Metode Support Vector Machines (SVM) dan Classification and Regression Trees (CART) Menggunakan GUI R (Studi Kasus di Kabupaten Wonosobo Tahun 2018). Jurnal Gaussian, 9(4), 525–534. https://doi.org/10.14710/j.gauss.v9i4.29449
Otok, B. W., & Sumarni. (2009). Bagging Cart pada Klasifikasi Anak Putus Sekolah. Seminar Nasional Statistika IX, November, XVI-1-XVI–9.
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 1–21. https://doi.org/10.1007/s42979-021-00592-x
Wulandari, K., & Yeniwati, Y. (2023). Analisis Kondisi Sosial Ekonomi Terhadap Penerima Bantuan Kartu Keluarga Sejahtera (KKS) Di Sumatera Barat. Ecosains: Jurnal Ilmiah Ekonomi Dan Pembangunan, 12(1), 77. https://doi.org/10.24036/ecosains.12291357.00
Yohannes, Y., & Hoddinott, J. (1999). Classification and regression trees: An Introduction. Technical Report, International Food Policy Research Institute.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rajul HAKIM, Muhammad ADNAN, Winny Dian SAFITRI

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Creative Commons Attribution-NonCommercial 4.0 International License.


















