Innovations in Computer Vision for External Disease Identification
DOI:
https://doi.org/10.38142/jisdb.v4i1.1624Keywords:
Computer VisionAbstract
The rapid development of artificial intelligence (AI) has introduced significant innovations in healthcare, particularly through computer vision technologies. This study explores qualitative perspectives on the use of computer vision for external disease identification, focusing on its applications, benefits, challenges, and future potential. A thematic review of literature from 2015 to 2025 was conducted using peer-reviewed journals, policy reports, and case studies. The findings reveal that computer vision has been successfully applied in dermatology, ophthalmology, and oral health, with performance often comparable to or exceeding that of general practitioners. Mobile and cloud-based applications extend these innovations to community healthcare, enabling wider access and patient empowerment. However, limitations remain, including dataset biases, privacy concerns, and the need for ethical frameworks. The study concludes that computer vision offers transformative opportunities for early and accessible disease detection, but its success depends on interdisciplinary collaboration, equitable dataset development, and responsible integration into healthcare systems. Recommendations for future research include longitudinal validation, cross-cultural testing, and integration with multimodal health data.
Downloads
References
Ahmed, M. M., Okesanya, O. J., Olaleke, N. O., Adigun, O. A., Adebayo, U. O., Oso, T. A., ... & Lucero-Prisno III, D. E. (2025, May). Integrating Digital Health Innovations to Achieve Universal Health Coverage: Promoting Health Outcomes and Quality Through Global Public Health Equity. In Healthcare (Vol. 13, No. 9, p. 1060). MDPI.
Alipour, N., Burke, T., & Courtney, J. (2024). Skin Type Diversity in Skin Lesion Datasets: A Review. In Current Dermatology Reports (Vol. 13, Issue 3, pp. 198–210). Springer. https://doi.org/10.1007/s13671-024-00440-0
Collings, S., Thompson, O., Hirst, E., Goossens, L., George, A., & Weinkove, R. (2016). Non-invasive detection of anaemia using digital photographs of the conjunctiva. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0153286
Creswell, J. W., & Creswell, J. D. (2023). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE.
Das, S. K., Dasgupta, R. K., Roy, S. D., & Shil, D. (2024). AI in Indian healthcare: From roadmap to reality. In Intelligent Pharmacy (Vol. 2, Issue 3, pp. 329–334). KeAi Publishing Communications Ltd. https://doi.org/10.1016/j.ipha.2024.02.005
Decup, F., Rihab, B., Nocturne, G., & Gosset, M. (2025). The role of dental professionals in identifying patients with a suspected primary Sjögren’s syndrome and suggestions for prevention and treatment of oral complications: a narrative review. In Heliyon (Vol. 11, Issue 13). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2025.e43564
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
Foresman, G., Biro, J., Tran, A., MacRae, K., Kazi, S., Schubel, L., Visconti, A., Gallagher, W., Smith, K. M., Giardina, T., Haskell, H., & Miller, K. (2025). Patient Perspectives on Artificial Intelligence in Health Care: Focus Group Study for Diagnostic Communication and Tool Implementation. Journal of Participatory Medicine, 17, e69564–e69564. https://doi.org/10.2196/69564
Fu, Q., Chen, Y., Li, Z., Jing, Q., Hu, C., Liu, H., Bao, J., Hong, Y., Shi, T., Li, K., Zou, H., Song, Y., Wang, H., Wang, X., Wang, Y., Liu, J., Liu, H., Chen, S., Chen, R., … Xiong, X. (2020). A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. EClinicalMedicine, 27. https://doi.org/10.1016/j.eclinm.2020.100558
Hasanzadeh, F., Josephson, C. B., Waters, G., Adedinsewo, D., Azizi, Z., & White, J. A. (2025). Bias recognition and mitigation strategies in artificial intelligence healthcare applications. In npj Digital Medicine (Vol. 8, Issue 1). Nature Research. https://doi.org/10.1038/s41746-025-01503-7
Khalifa, M., & Albadawy, M. (2024). AI in diagnostic imaging: Revolutionising accuracy and efficiency. Computer Methods and Programs in Biomedicine Update, 5. https://doi.org/10.1016/j.cmpbup.2024.100146
Mukhsin, M., Renaldo, N., Junaedi, A. T., Veronica, K., & Cecilia, C. (2023). Innovative Approaches to Cloud-Based Accounting Information Systems: Integrating AI, Blockchain, and IoT. Proceedings of International Conference on Business Management and Accounting (ICOBIMA), 2(1), 288–294. https://doi.org/https://doi.org/10.35145/icobima.v2i1.4375
Ngoo, A., Finnane, A., McMeniman, E., Tan, J. M., Janda, M., & Soyer, H. P. (2018). Efficacy of smartphone applications in high-risk pigmented lesions. Australasian Journal of Dermatology, 59(3), e175–e182. https://doi.org/10.1111/ajd.12599
Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A governance model for the application of AI in health care. In Journal of the American Medical Informatics Association (Vol. 27, Issue 3, pp. 491–497). Oxford University Press. https://doi.org/10.1093/jamia/ocz192
Sekaran, U., & Bougie, R. (2016). Research Method for Business A Skill-Building Approach Seventh Edition (Seventh Ed). John Wiley & Sons. https://doi.org/10.1007/978-94-007-0753-5_102084
Ting, D. S. W., Cheung, C. Y. L., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A., Hamzah, H., Garcia-Franco, R., Yeo, I. Y. S., Lee, S. Y., Wong, E. Y. M., Sabanayagam, C., Baskaran, M., Ibrahim, F., Tan, N. C., Finkelstein, E. A., Lamoureux, E. L., Wong, I. Y., Bressler, N. M., … Wong, T. Y. (2017). Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA - Journal of the American Medical Association, 318(22), 2211–2223. https://doi.org/10.1001/jama.2017.18152
Tschandl, P., Rosendahl, C., Akay, B. N., Argenziano, G., Blum, A., Braun, R. P., Cabo, H., Gourhant, J. Y., Kreusch, J., Lallas, A., Lapins, J., Marghoob, A., Menzies, S., Neuber, N. M., Paoli, J., Rabinovitz, H. S., Rinner, C., Scope, A., Soyer, H. P., … Kittler, H. (2019). Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks. JAMA Dermatology, 155(1), 58–65. https://doi.org/10.1001/jamadermatol.2018.4378
Yang, S. X., Han, Y., Ma, W., Tulpan, D., Li, J., Li, J., & Yue, Y. (2025). Review of computer vision for livestock body conformation assessment. In Agriculture Communications (Vol. 3, Issue 3). Elsevier B.V. https://doi.org/10.1016/j.agrcom.2025.100099
Yang, Y. C., Chung, W. C., Wu, C. Y., Hung, C. L., & Chen, Y. J. (2025). Skin disease classification using a transfer learning model and a fusion strategy. Intelligence-Based Medicine, 12. https://doi.org/10.1016/j.ibmed.2025.100271.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nicholas RENALDO, Wilda SUSANTI , Rangga Rahmadian YULIENDI , Yulvia Nora MARLIM , Wahyu Joni KURNIAWAN, Gusrio TENDRA

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Creative Commons Attribution-NonCommercial 4.0 International License.